

Website: https://codescholarstutoring.com/

Contact: codescholarstutoring@gmail.com

USACO Bronze 2025 – Reflection

 Problem 1: Reflection

https://usaco.org/index.php?page=viewproblem2&cpid=1491

Understanding the Problem Setup

1. We have an N × N grid (here N=4) that was supposed to be formed by taking the top-
right quadrant (rows 1–2, columns 3–4 for N=4) and reflecting it across the central
horizontal and vertical lines into the other three quadrants.

2. After Bessie’s vandalism, some cells are “off” (.) or “on” (#) incorrectly. Farmer John

wants to fix (paint or erase) the fewest possible cells so that the entire grid once again

matches what one would get by copying the top-right quadrant (the “master” quadrant)

into all other quadrants via reflection.

3. A reflection across the center means:

o Vertical reflection swaps column ccc in the top half with column (N+1−c)(N+1 -

c)(N+1−c).

o Horizontal reflection swaps row rrr in the top half with row (N+1−r)(N+1 -

r)(N+1−r).

https://codescholarstutoring.com/
mailto:codescholarstutoring@gmail.com
https://usaco.org/index.php?page=viewproblem2&cpid=1491

4. For N=4, the grid is split at row 2/3 (horizontal line) and column 2/3 (vertical line), so:

o Top-Right quadrant (the “master” painting) is rows 1–2, columns 3–4.

o Each cell (r,c)(r,c)(r,c) in that quadrant dictates the values of three other

“reflected” cells:

1. (r, 5−c)(r,\, 5 - c)(r,5−c) – reflection across the vertical center,

2. (5−r, c)(5 - r,\, c)(5−r,c) – reflection across the horizontal center,

3. (5−r, 5−c)(5 - r,\, 5 - c)(5−r,5−c) – reflection across both centers.

5. To measure how many fixes (“operations”) are needed, we group each “master” cell

(r,c)(r,c)(r,c) in the top-right quadrant together with its three reflected partners. We then

see how many flips (from . to # or vice versa) are needed to make all four cells match

(all . or all #).

o In each group of four cells, let

▪ xxx = number of cells that are currently #.

▪ 4−x4 - x4−x = number of cells that are currently ..

o If you decide to make them all #, you need (4−x)(4 - x)(4−x) changes (all .

become #).

o If you decide to make them all ., you need xxx changes (all # become .).

o You will choose the smaller of these two costs, min⁡(x, 4−x)\min(x,\ 4-

x)min(x, 4−x).

6. Summing this cost over every cell (r,c)(r,c)(r,c) in the top-right quadrant (without double-

counting, since each group of four is disjoint) gives the minimum total operations

required.

Given Input

bash

4 5 <-- N=4, U=5 (there will be 5 updates)

..#.

##.#

..##

1 3

2 3

4 3

4 4

4 4

• The initial 4×4 canvas (rows labeled 1–4, columns 1–4) is:

 c=1 c=2 c=3 c=4

r=1 . . # .

r=2 # # . #

r=3 # # # #

r=4 . . # #

• Then we have 5 updates that each “toggle” a single cell between . and #.

We must output U+1=6U+1=6U+1=6 lines total:

1. The minimum fix cost before any updates.

2. The minimum fix cost after each of the 5 updates in order.

The sample output is:

4

3

2

1

0

1

We will walk through how each of these 6 values is obtained.

Quadrant Groups for N=4

Because N=4, the top-right quadrant is:

• Rows = 1,2

• Columns = 3,4

Hence, there are 4 “master” cells in this quadrant:

1. (1,3)(1,3)(1,3)

2. (1,4)(1,4)(1,4)

3. (2,3)(2,3)(2,3)

4. (2,4)(2,4)(2,4)

Each such cell is grouped with its three reflections:

• For a cell (r,c)(r,c)(r,c) in the top-right quadrant, the group of four is: {(r,c),  (r,5−c),

 (5−r,c),  (5−r, 5−c)} \Bigl\{ (r,c),\; (r, 5-c),\; (5-r, c),\; (5-r,\, 5-c)

\Bigr\}{(r,c),(r,5−c),(5−r,c),(5−r,5−c)}

Concretely, the 4 disjoint groups of cells for N=4 are:

• Group 1 (from master cell (1,3)(1,3)(1,3)):

{(1,3), (1,2), (4,3), (4,2)}\{(1,3),\, (1,2),\, (4,3),\, (4,2)\}{(1,3),(1,2),(4,3),(4,2)}

• Group 2 (from master cell (1,4)(1,4)(1,4)):

{(1,4), (1,1), (4,4), (4,1)}\{(1,4),\, (1,1),\, (4,4),\, (4,1)\}{(1,4),(1,1),(4,4),(4,1)}

• Group 3 (from master cell (2,3)(2,3)(2,3)):

{(2,3), (2,2), (3,3), (3,2)}\{(2,3),\, (2,2),\, (3,3),\, (3,2)\}{(2,3),(2,2),(3,3),(3,2)}

• Group 4 (from master cell (2,4)(2,4)(2,4)):

{(2,4), (2,1), (3,4), (3,1)}\{(2,4),\, (2,1),\, (3,4),\, (3,1)\}{(2,4),(2,1),(3,4),(3,1)}

In each step, we count how many # vs. . appear in each group of four. The cost to fix that group

is the smaller of “make them all #” or “make them all ..” Then sum over the 4 groups.

1) Cost Before Any Updates

Recall the original canvas:

r\c 1 2 3 4

1 . . # .

2 # # . #

3 # # # #

4 . . # #

We evaluate each group:

Group 1

{(1,3), (1,2), (4,3), (4,2)}\{(1,3),\, (1,2),\, (4,3),\, (4,2)\}{(1,3),(1,2),(4,3),(4,2)}

• (1,3)(1,3)(1,3) = #

• (1,2)(1,2)(1,2) = .

• (4,3)(4,3)(4,3) = #

• (4,2)(4,2)(4,2) = .

Hence we have 2 # and 2 ..

• Converting all to # would cost 2 changes (the 2 . to #).

• Converting all to . would cost 2 changes (the 2 # to .).

Minimum cost for Group 1 = 2.

Group 2

{(1,4), (1,1), (4,4), (4,1)}\{(1,4),\, (1,1),\, (4,4),\, (4,1)\}{(1,4),(1,1),(4,4),(4,1)}

• (1,4)(1,4)(1,4) = .

• (1,1)(1,1)(1,1) = .

• (4,4)(4,4)(4,4) = #

• (4,1)(4,1)(4,1) = .

That is 1 # and 3 ..

• All to #: cost = 3

• All to .: cost = 1

Minimum cost for Group 2 = 1.

Group 3

{(2,3), (2,2), (3,3), (3,2)}\{(2,3),\, (2,2),\, (3,3),\, (3,2)\}{(2,3),(2,2),(3,3),(3,2)}

• (2,3)(2,3)(2,3) = .

• (2,2)(2,2)(2,2) = #

• (3,3)(3,3)(3,3) = #

• (3,2)(3,2)(3,2) = #

We have 3 # and 1 ..

• All #: cost = 1

• All .: cost = 3

Minimum cost for Group 3 = 1.

Group 4

{(2,4), (2,1), (3,4), (3,1)}\{(2,4),\, (2,1),\, (3,4),\, (3,1)\}{(2,4),(2,1),(3,4),(3,1)}

• (2,4)(2,4)(2,4) = #

• (2,1)(2,1)(2,1) = #

• (3,4)(3,4)(3,4) = #

• (3,1)(3,1)(3,1) = #

All 4 are #.

• All #: cost = 0

• All .: cost = 4

Minimum cost for Group 4 = 0.

Summing all groups: 2+1+1+0=4.2 + 1 + 1 + 0 = 4.2+1+1+0=4.

Hence, before any updates, the minimum number of operations is 4.

2) After Update #1: Toggle (1,3)(1,3)(1,3)

• The first update says: “toggle row 1, column 3.”

• Originally (1,3)(1,3)(1,3) was #. Toggling that makes (1,3)(1,3)(1,3) become ..

New canvas after Update #1

r\c 1 2 3 4

1

2 # # . #

3 # # # #

4 . . # #

Recompute group costs:

• Group 1 {(1,3),(1,2),(4,3),(4,2)}\{(1,3), (1,2), (4,3), (4,2)\}{(1,3),(1,2),(4,3),(4,2)}

o (1,3) = ., (1,2) = ., (4,3) = #, (4,2) = .

o We have 1 # and 3 . → cost = 1 (cheaper to make them all .).

• Group 2 {(1,4),(1,1),(4,4),(4,1)}\{(1,4), (1,1), (4,4), (4,1)\}{(1,4),(1,1),(4,4),(4,1)}

o (1,4) = ., (1,1) = ., (4,4) = #, (4,1) = .

o Again 1 #, 3 . → cost = 1.

• Group 3 {(2,3),(2,2),(3,3),(3,2)}\{(2,3), (2,2), (3,3), (3,2)\}{(2,3),(2,2),(3,3),(3,2)}

o (2,3) = ., (2,2) = #, (3,3) = #, (3,2) = #

o 3 #, 1 . → cost = 1.

• Group 4 {(2,4),(2,1),(3,4),(3,1)}\{(2,4), (2,1), (3,4), (3,1)\}{(2,4),(2,1),(3,4),(3,1)}

o (2,4) = #, (2,1) = #, (3,4) = #, (3,1) = #

o All # → cost = 0.

Total: 1+1+1+0=3.1 + 1 + 1 + 0 = 3.1+1+1+0=3.

So, after the first toggle, the cost is 3.

3) After Update #2: Toggle (2,3)(2,3)(2,3)

• Now we look at the canvas after the first update. Cell (2,3)(2,3)(2,3) was . in that

version, so toggling it becomes #.

New canvas after Update #2

r\c 1 2 3 4

1

2 # # # #

3 # # # #

4 . . # #

Check the groups again:

• Group 1 (1,3),(1,2),(4,3),(4,2)1,3),(1,2),(4,3),(4,2)1,3),(1,2),(4,3),(4,2)):

o (1,3) = ., (1,2) = ., (4,3) = #, (4,2) = .

o 1 #, 3 . → cost = 1

• Group 2 (1,4),(1,1),(4,4),(4,1)1,4),(1,1),(4,4),(4,1)1,4),(1,1),(4,4),(4,1)):

o (1,4) = ., (1,1) = ., (4,4) = #, (4,1) = .

o 1 #, 3 . → cost = 1

• Group 3 (2,3),(2,2),(3,3),(3,2)2,3),(2,2),(3,3),(3,2)2,3),(2,2),(3,3),(3,2)):

o (2,3) = #, (2,2) = #, (3,3) = #, (3,2) = #

o All # → cost = 0

• Group 4 (2,4),(2,1),(3,4),(3,1)2,4),(2,1),(3,4),(3,1)2,4),(2,1),(3,4),(3,1)):

o (2,4) = #, (2,1) = #, (3,4) = #, (3,1) = #

o All # → cost = 0

Total: 1+1+0+0=2.1 + 1 + 0 + 0 = 2.1+1+0+0=2.

Hence the cost is 2 after the second update.

4) After Update #3: Toggle (4,3)(4,3)(4,3)

• We look at the canvas after the second update:

r\c 1 2 3 4

1

2 # # # #

3 # # # #

4 . . # #

• Cell (4,3)(4,3)(4,3) here is #. Toggling # → ..

New canvas after Update #3

r\c 1 2 3 4

1

r\c 1 2 3 4

2 # # # #

3 # # # #

4 . . . #

Check groups:

• Group 1 (1,3),(1,2),(4,3),(4,2)1,3),(1,2),(4,3),(4,2)1,3),(1,2),(4,3),(4,2)):

o (1,3) = ., (1,2) = ., (4,3) = ., (4,2) = .

o All . → cost = 0

• Group 2 (1,4),(1,1),(4,4),(4,1)1,4),(1,1),(4,4),(4,1)1,4),(1,1),(4,4),(4,1)):

o (1,4) = ., (1,1) = ., (4,4) = #, (4,1) = .

o 1 #, 3 . → cost = 1

• Group 3 (2,3),(2,2),(3,3),(3,2)2,3),(2,2),(3,3),(3,2)2,3),(2,2),(3,3),(3,2)):

o (2,3) = #, (2,2) = #, (3,3) = #, (3,2) = #

o All # → cost = 0

• Group 4 (2,4),(2,1),(3,4),(3,1)2,4),(2,1),(3,4),(3,1)2,4),(2,1),(3,4),(3,1)):

o (2,4) = #, (2,1) = #, (3,4) = #, (3,1) = #

o All # → cost = 0

Total: 0+1+0+0=1.0 + 1 + 0 + 0 = 1.0+1+0+0=1.

Hence the cost after the third update is 1.

5) After Update #4: Toggle (4,4)(4,4)(4,4)

• Canvas after the third update:

r\c 1 2 3 4

1

2 # # # #

3 # # # #

4 . . . #

• Cell (4,4)(4,4)(4,4) is currently #. Toggling that → ..

New canvas after Update #4

r\c 1 2 3 4

1

2 # # # #

r\c 1 2 3 4

3 # # # #

4

Check groups:

• Group 1 (1,3),(1,2),(4,3),(4,2)1,3),(1,2),(4,3),(4,2)1,3),(1,2),(4,3),(4,2)):

o ., ., ., .

o All . → cost = 0

• Group 2 (1,4),(1,1),(4,4),(4,1)1,4),(1,1),(4,4),(4,1)1,4),(1,1),(4,4),(4,1)):

o (1,4) = ., (1,1) = ., (4,4) = ., (4,1) = .

o All . → cost = 0

• Group 3 (2,3),(2,2),(3,3),(3,2)2,3),(2,2),(3,3),(3,2)2,3),(2,2),(3,3),(3,2)):

o All #

o cost = 0

• Group 4 (2,4),(2,1),(3,4),(3,1)2,4),(2,1),(3,4),(3,1)2,4),(2,1),(3,4),(3,1)):

o All #

o cost = 0

Total: 0+0+0+0=0.0+0+0+0 = 0.0+0+0+0=0.

So the cost is 0 after the fourth update (the canvas is perfectly symmetric now).

6) After Update #5: Toggle (4,4)(4,4)(4,4) Again

• Right after update #4, (4,4)(4,4)(4,4) is .. Toggling it back → #.

New canvas after Update #5

r\c 1 2 3 4

1

2 # # # #

3 # # # #

4 . . . #

Check groups:

• Group 1 (1,3),(1,2),(4,3),(4,2)1,3),(1,2),(4,3),(4,2)1,3),(1,2),(4,3),(4,2)):

o still ., ., ., .

o All . → cost = 0

• Group 2 (1,4),(1,1),(4,4),(4,1)1,4),(1,1),(4,4),(4,1)1,4),(1,1),(4,4),(4,1)):

o (1,4) = ., (1,1) = ., (4,4) = #, (4,1) = .

o That is 1 # and 3 . → cost = 1 (cheaper to make them all .)

• Group 3 (2,3),(2,2),(3,3),(3,2)2,3),(2,2),(3,3),(3,2)2,3),(2,2),(3,3),(3,2)):

o All # → cost = 0

• Group 4 (2,4),(2,1),(3,4),(3,1)2,4),(2,1),(3,4),(3,1)2,4),(2,1),(3,4),(3,1)):

o All # → cost = 0

Total: 0+1+0+0=1.0 + 1 + 0 + 0 = 1.0+1+0+0=1.

Hence the cost is 1 after the final update.

The sequence of “minimum number of operations needed” is:

1. Before updates: 4

2. After toggle (1,3): 3

3. After toggle (2,3): 2

4. After toggle (4,3): 1

5. After toggle (4,4): 0

6. After toggle (4,4) again: 1

These match the sample’s output lines:

4

3

2

1

0

1

	Given Input
	Quadrant Groups for N=4
	1) Cost Before Any Updates
	Group 1
	Group 2
	Group 3
	Group 4

	2) After Update #1: Toggle (1,3)(1,3)(1,3)
	New canvas after Update #1

	3) After Update #2: Toggle (2,3)(2,3)(2,3)
	New canvas after Update #2

	4) After Update #3: Toggle (4,3)(4,3)(4,3)
	New canvas after Update #3

	5) After Update #4: Toggle (4,4)(4,4)(4,4)
	New canvas after Update #4

	6) After Update #5: Toggle (4,4)(4,4)(4,4) Again
	New canvas after Update #5

